Syllabus Edition

First teaching 2014

Last exams 2024

|

Concentration Calculations (DP IB Chemistry: HL)

Revision Note

Stewart

Author

Stewart

Expertise

Chemistry Lead

Concentration Calculations

Step by step

  • Concentration calculations involve bringing together the skills and knowledge you have acquired previously and applying them to problem solving
  • You should be able to easily convert between moles, mass, concentrations and volumes ( of solutions and gases)
  • The four steps involved in problem solving are:
    • write the balanced equation for the reaction
    • determine the mass/ moles/ concentration/ volume of the of the substance(s) you know about
    • use the balanced equation to deduce the mole ratios of the substances present
    • calculate the mass/ moles/ concentration/ volume of the of the unknown substance(s)

Worked example

25.0 cm3 of 0.050 mol dm-3 sodium carbonate was completely neutralised by 20.0 cm3 of dilute hydrochloric acid.Calculate the concentration in mol dm-3 of the hydrochloric acid.

Answer:

Step 1: Write the balanced equation for the reaction

Na2CO3  +  2HCl  →  2NaCl  +  H2O  +  CO2

Step 2: Determine the moles of the known substance, in this case sodium carbonate. Don't forget to divide the volume by 1000 to convert cm3 to dm3

moles = volume x concentration

amount (Na2CO3) = 0.0250 dm3 x 0.050 mol dm-3 = 0.00125 mol

Step 3: Use the balanced equation to deduce the mole ratio of sodium carbonate to hydrochloric acid:

1 mol of Na2CO3 reacts with 2 mol of HCl, so the mole ratio is 1 : 2

Therefore 0.00125 moles of Na2CO3 react with 0.00250 moles of HCl

Step 4: Calculate the concentration of the unknown substance, hydrochloric acid

Worked example

Calculate the volume of hydrochloric acid of concentration 1.0 mol dm-3 that is required to react completely with 2.5 g of calcium carbonate.

Answer:

Step 1: Write the balanced equation for the reaction

CaCO3  +  2HCl  →  CaCl2  +  H2O  +  CO2

Step 2: Determine the moles of the known substance, calcium carbonate

Step 3: Use the balanced equation to deduce the mole ratio of calcium carbonate to hydrochloric acid:

1 mol of CaCO3 requires 2 mol of HCl

So 0.025 mol of CaCO3 requires 0.050 mol of HCl

Step 4: Calculate the volume of HCl required

Did this page help you?

Stewart

Author: Stewart

Stewart has been an enthusiastic GCSE, IGCSE, A Level and IB teacher for more than 30 years in the UK as well as overseas, and has also been an examiner for IB and A Level. As a long-standing Head of Science, Stewart brings a wealth of experience to creating Topic Questions and revision materials for Save My Exams. Stewart specialises in Chemistry, but has also taught Physics and Environmental Systems and Societies.