Syllabus Edition

First teaching 2015

Last exams 2025

|

Tricellular Model of Atmospheric Circulation

Alistair Marjot

Written by: Alistair Marjot

Reviewed by: Bridgette Barrett

Tricellular Model of Atmospheric Circulation

Global Atmospheric Circulation

  • The global atmospheric circulation can be described as a worldwide system of winds moving solar heat energy from the equator to the poles to reach a balance in temperature

Wind formation

  • Air always moves from areas of higher pressure to lower pressure and this movement of air generates wind

  • Winds are large scale movements of air due to differences in air pressure

  • This pressure difference is because the Sun heats the Earth's surface unevenly

  • Insolation that reaches the Earth's surface is greater at the equator than at the poles due to the Earth's curvature and angle of the Earth's tilt

angle-of-insolation

Diagram showing how angle of insolation spreads solar radiation over a wider area at the poles than the equator

  • Hot air rises and cooler air sinks through the process of convection

  • This irregular heating of the Earth’s surface creates pressure cells

  • Each cell generates different weather patterns

wind-pressure-cell

A typical wind pressure cell system showing distribution of pressure at Earth's surface and upper atmosphere

  • Air movement within the cell is roughly circular and moves surplus heat from equatorial regions to other parts of the Earth

  • In both hemispheres, heat energy transfer occurs where 3 atmospheric circulation cells meet

  • These are the Hadley, Ferrel and Polar cells and are shown via the tri-cellular model:

2-4-2-tricellular-model-of-atmospheric-circulation

Heat energy flow and surface winds can be explained using the tricellular model of atmospheric circulation

The tri-cellular atmospheric wind model

  • Each hemisphere has three cells (the Hadley cell, Ferrel cell and Polar cell) that circulate air from the surface through the atmosphere and back to the Earth's surface

    • Hadley cell is the largest cell and extends from the equator to between 30° and 40° north and south

    • Trade winds blow from the tropical regions to the equator and travel in an easterly direction

    • Near the equator, the trade winds meet, and the hot air rises and forms thunderstorms (tropical rainstorms)

    • From the top of these storms, air flows towards higher latitudes, where it becomes cooler and sinks over subtropical regions

    • This brings dry, cloudless air, which is warmed by the Sun as it descends: the climate is warm and dry (hot deserts are usually found here)

  • Ferrel cell is the middle cell, and generally occurs from the edge of the Hadley cell to between 60° and 70° north and south of the equator

    • This is the most complicated cell as it moves in the opposite direction from the Hadley and Polar cells; similar to a cog in a machine

    • Air in this cell joins the sinking air of the Hadley cell and travels at low heights to mid-latitudes where it rises along the border with the cold air of the Polar cell

    • This occurs around the mid-latitudes and accounts for frequent unsettled weather

  • Polar cell is the smallest and weakest of the atmospheric cells. It extends from the edge of the Ferrel cell to the poles at 90° north and south

    • Air in these cells is cold and sinks creating high pressure over the highest latitudes

    • The cold air flows out towards the lower latitudes at the surface, where it is slightly warmed and rises to return at altitude to the poles

Last updated:

Did this page help you?