Modulus Functions & Further Transformations (DP IB Analysis & Approaches (AA))

Flashcards

1/31
  • What is the modulus function?

Enjoying Flashcards?
Tell us what you think

Cards in this collection (31)

  • What is the modulus function?

    The modulus function, f left parenthesis x right parenthesis equals open vertical bar x close vertical bar, also known as the absolute value function, gives the magnitude of a number regardless of its sign .

    It can be defined as

    • open vertical bar x close vertical bar equals square root of x squared end root

    • or open vertical bar x close vertical bar equals open curly brackets table row x cell x greater or equal than 0 end cell row cell negative x end cell cell x less than 0 end cell end table close

  • What is the domain of the modulus function?

    The domain of the modulus function is the set of all real values.

  • What is the range of the modulus function?

    The range of the modulus function is the set of all real non-negative values.

  • What is the y-intercept of the graph y equals vertical line x vertical line?

    What us the y-intercept of the graph y equals vertical line x vertical line is (0, 0).

  • True or False?

    The graph y equals vertical line x vertical line has a single root.

    True.

    The graph y equals vertical line x vertical line has a single root at (0, 0).

  • What is the equation of the line of symmetry of the graph y equals vertical line x vertical line?

    The line of symmetry of the graph y equals vertical line x vertical line has equation x equals 0.

    It is symmetrical about the y-axis.

  • How many roots of a graph of the form y equals a vertical line x plus p vertical line plus q have?

    A graph of the form y equals a vertical line x plus p vertical line plus q can have 0, 1 or 2 roots.

  • True or False?

    A graph of the form y equals a vertical line x plus p vertical line plus q has a vertex at open parentheses negative p comma space q close parentheses.

    True.

    A graph of the form y equals a vertical line x plus p vertical line plus q has a vertex at open parentheses negative p comma space q close parentheses.

  • True or False?

    open vertical bar p minus x close vertical bar not equal to open vertical bar x minus p close vertical bar

    False.

    open vertical bar p minus x close vertical bar equals open vertical bar x minus p close vertical bar

    For example, open vertical bar 4 minus x close vertical bar equals open vertical bar x minus 4 close vertical bar.

  • What can be said about the continuity of a modulus function at the origin?

    A modulus function is continuous at the origin.

    However, it is not differentiable.

  • How can the graph of the modulus function y equals open vertical bar f open parentheses x close parentheses close vertical bar be sketched?

    The graph of the modulus function y equals open vertical bar f open parentheses x close parentheses close vertical bar can be sketched by:

    • keeping any parts of the graph y equals f open parentheses x close parentheses that already lie above the x-axis, y greater or equal than 0,

    • and reflecting any parts that lie below the x-axis, across the x-axis.

  • How is the graph of the modulus function y equals f open parentheses open vertical bar x close vertical bar close parentheses sketched?

    The graph of the modulus function y equals f open parentheses open vertical bar x close vertical bar close parentheses can be sketched by:

    • keeping any parts of the graph y equals f open parentheses x close parentheses that already lie on the right-hand side of the y-axis, x greater or equal than 0,

    • and reflecting this section across the y-axis.

  • What is the difference between y equals open vertical bar f open parentheses x close parentheses close vertical bar and y equals f open parentheses open vertical bar x close vertical bar close parentheses?

    The difference between y equals open vertical bar f open parentheses x close parentheses close vertical bar and y equals f open parentheses open vertical bar x close vertical bar close parentheses is that:

    • The graph of y equals open vertical bar f open parentheses x close parentheses close vertical bar never goes below the x-axis and it does not have to have any lines of symmetry.

    • The graph of y equals f open parentheses open vertical bar x close vertical bar close parentheses is always symmetrical about the y-axis and it can go below the x-axis.

  • True or False?

    When sketching a reflection of a modulus function the graphs should look smooth at the points where the original graph has been reflected.

    False.

    When sketching a reflection of a modulus function the graphs should not look smooth at the points where the original graph has been reflected, they should look sharp.

  • In what order should transformations that are applied outside a modulus function be carried out?

    Transformations that are applied outside a modulus function should follow the same order as the order of operations.

    • For a function of the form y equals open vertical bar a f left parenthesis x right parenthesis plus b close vertical bar, deal with the a then the b then the modulus.

    • For a function of the form y equals a open vertical bar f left parenthesis x right parenthesis close vertical bar plus b, deal with the modulus then the a then the b.

  • In what order should transformations that are applied inside a modulus function be carried out?

    Transformations that are applied inside a modulus function should follow the reverse order to the order of operations.

    • For a function of the formy equals f left parenthesis open vertical bar a x plus b close vertical bar right parenthesis, deal with modulus then the b then the a.

    • For a function of the formy equals f left parenthesis a open vertical bar x close vertical bar plus b right parenthesis, deal with the b then the a then the modulus.

  • How do you find the modulus of an equation, e.g. f open parentheses x close parentheses equals x minus 8?

    You can find the modulus of an equation by keeping all positive outputs of the function and changing the sign of all negative outputs of the function, open vertical bar f open parentheses x close parentheses close vertical bar equals open curly brackets table row cell f open parentheses x close parentheses end cell cell f open parentheses x close parentheses greater or equal than 0 end cell row cell negative f open parentheses x close parentheses end cell cell f open parentheses x close parentheses less than 0 end cell end table close

    E.g. f open parentheses x close parentheses equals x minus 8, f open parentheses 8 close parentheses equals 0, so when x greater or equal than 8, open vertical bar f open parentheses x close parentheses close vertical bar equals f open parentheses x close parentheses, when x less than 8, open vertical bar f open parentheses x close parentheses close vertical bar equals negative f open parentheses x close parentheses.

  • How can a modulus equation,open vertical bar f open parentheses x close parentheses close vertical bar equals g open parentheses x close parentheses, be solved graphically?

    A modulus equation, open vertical bar f open parentheses x close parentheses close vertical bar equals g open parentheses x close parentheses, can be solved graphically by:

    • drawing y equals open vertical bar f open parentheses x close parentheses close vertical bar and y equals g open parentheses x close parentheses into your GDC,

    • and finding the x-coordinates of the points of intersection.

  • How can a modulus equation, open vertical bar f open parentheses x close parentheses close vertical bar equals g open parentheses x close parentheses, be solved analytically?

    A modulus equation, open vertical bar f open parentheses x close parentheses close vertical bar equals g open parentheses x close parentheses, be solved analytically by:

    • forming two equations (f open parentheses x close parentheses equals g open parentheses x close parentheses and f open parentheses x close parentheses equals negative g open parentheses x close parentheses),

    • solving both equations,

    • and checking that the solutions work in the original equation.

  • What two equations need to be formed to solve the modulus equation open vertical bar fraction numerator 2 x plus 7 over denominator 3 end fraction close vertical bar equals x minus 5.

    The two equations need to be formed to solve the modulus equation open vertical bar fraction numerator 2 x plus 7 over denominator 3 end fraction close vertical bar equals x minus 5, are:

    • fraction numerator 2 x plus 7 over denominator 3 end fraction equals x minus 5

    • fraction numerator 2 x plus 7 over denominator 3 end fraction equals negative open parentheses x minus 5 close parentheses

  • True or False?

    The modulus inequality, open vertical bar f open parentheses x close parentheses close vertical bar less than g open parentheses x close parentheses can be solved by solving the two pairs of inequalities:

    • f open parentheses x close parentheses greater than g open parentheses x close parentheses, when f open parentheses x close parentheses greater or equal than 0

    • f open parentheses x close parentheses less than negative g open parentheses x close parentheses, when f open parentheses x close parentheses less or equal than 0

    False.

    The modulus inequality, open vertical bar f open parentheses x close parentheses close vertical bar less than g open parentheses x close parentheses can not be solved by solving the two pairs of inequalities:

    • f open parentheses x close parentheses greater than g open parentheses x close parentheses, when f open parentheses x close parentheses greater or equal than 0

    • f open parentheses x close parentheses less than negative g open parentheses x close parentheses, when f open parentheses x close parentheses less or equal than 0

    These inequalities will provide the solution to open vertical bar f open parentheses x close parentheses close vertical bar greater than g open parentheses x close parentheses.

    To solve open vertical bar f open parentheses x close parentheses close vertical bar less than g open parentheses x close parentheses, solve the inequalities:

    • f open parentheses x close parentheses less than g open parentheses x close parentheses, when f open parentheses x close parentheses greater or equal than 0

    • f open parentheses x close parentheses greater than negative g open parentheses x close parentheses, when f open parentheses x close parentheses less or equal than 0

  • What happens to the coordinates of a graph that undergoes the reciprocal transformation fraction numerator 1 over denominator f open parentheses x close parentheses end fraction?

    When a graph undergoes the reciprocal transformation fraction numerator 1 over denominator f open parentheses x close parentheses end fraction, the coordinates open parentheses x comma space y close parentheses become open parentheses x comma space fraction numerator space 1 over denominator y end fraction close parentheses, where y not equal to 0.

    I.e., the x-coordinates remain the same and the y-coordinates become their reciprocals.

  • True or False?

    When a graph undergoes the reciprocal transformation y equals fraction numerator 1 over denominator f open parentheses x close parentheses end fraction, any points on the graph that lie on the line y = 1 or the line y = -1 , stay the same.

    True.

    When a graph undergoes the reciprocal transformation y equals fraction numerator 1 over denominator f open parentheses x close parentheses end fraction, any points on the graph that lie on the line y = 1 or the line y = -1 , stay the same.

  • What happens to a y-intercept open parentheses 0 comma space c close parentheses of y equals f open parentheses x close parentheses in the reciprocal graph y equals fraction numerator 1 over denominator f open parentheses x close parentheses end fraction?

    The y-intercept of the reciprocal graph y equals fraction numerator 1 over denominator f open parentheses x close parentheses end fraction, is at open parentheses 0 comma space 1 over c close parentheses.

  • How does a root of y equals f open parentheses x close parentheses transform in the reciprocal graph y equals fraction numerator 1 over denominator f open parentheses x close parentheses end fraction?

    A root of y equals f open parentheses x close parentheses becomes a vertical asymptote in the reciprocal graph y equals fraction numerator 1 over denominator f open parentheses x close parentheses end fraction.

  • True or False?

    If y equals f open parentheses x close parentheses is increasing, then y equals fraction numerator 1 over denominator f open parentheses x close parentheses end fractionis also increasing.

    False.

    If y equals f open parentheses x close parentheses is increasing, then y equals fraction numerator 1 over denominator f open parentheses x close parentheses end fraction is decreasing.

  • What happens to a horizontal asymptote y equals k open parentheses k not equal to 0 close parentheses of f open parentheses x close parentheses in the reciprocal graph?

    If f open parentheses x close parentheses has a horizontal asymptote y equals k open parentheses k not equal to 0 close parentheses, then the reciprocal graph y equals fraction numerator 1 over denominator f open parentheses x close parentheses end fraction has a horizontal asymptote at y equals 1 over k.

  • In the square transformation y equals open square brackets f open parentheses x close parentheses close square brackets squared, what happens to points below the x-axis?

    In the square transformation y equals open square brackets f open parentheses x close parentheses close square brackets squared:

    • points below the x-axis are reflected above the x-axis,

    • and the distance between the x-axis and the point is squared.

  • If open parentheses x subscript 1 comma space y subscript 1 close parentheses is a point on y equals f open parentheses x close parentheses, what is the corresponding point on y equals open square brackets f open parentheses x close parentheses close square brackets squared?

    If open parentheses x subscript 1 comma space y subscript 1 close parentheses is a point on y equals f open parentheses x close parentheses, then the corresponding point on y equals open square brackets f open parentheses x close parentheses close square brackets squared is open parentheses x subscript 1 comma space y subscript 1 squared close parentheses.

  • How does a root of y equals f open parentheses x close parentheses transform in the square graph y equals open square brackets f open parentheses x close parentheses close square brackets squared?

    A root of y equals f open parentheses x close parentheses becomes a root and turning point in y equals open square brackets f open parentheses x close parentheses close square brackets squared.

  • True or False?

    The graph of y equals open square brackets f open parentheses x close parentheses close square brackets squared can have negative y-values.

    False.

    The graph of y equals open square brackets f open parentheses x close parentheses close square brackets squared can never go below the x-axis.