Syllabus Edition

First teaching 2023

First exams 2025

|

Mechanism of Ventilation (HL IB Biology)

Revision Note

Marlene

Author

Marlene

Expertise

Biology

Ventilation: Mechanism

  • Ventilation is essential for the effective exchange of gases in the lungs
    • It replaces older air in the lungs with fresh air from the external environment
    • This helps to maintain the concentration gradient of oxygen and carbon dioxide between the alveoli and blood
  • Ventilation involves inspiration (breathing in) and expiration (breathing out)

Inspiration

  • The breathing-in, or inspiration, process causes the volume of the chest to increase and the air pressure to decrease until it is lower than the atmospheric pressure
    • When gas is in a large volume container that allows the gas particles to spread out, the pressure exerted by the gas on the walls of the container is low
  • As a result, air moves down the pressure gradient and rushes into the lungs
    • A gas will always move down a pressure gradient from an area of high pressure to an area of low pressure
  • The inspiration process
    • The diaphragm contracts and flattens, increasing chest volume
    • In addition to the flattening of the diaphragm the external intercostal muscles contract, causing the ribcage to move upwards and outwards; this also increases chest volume

Inhalation, IGCSE & GCSE Biology revision notes

The process of inspiration

Expiration

  • Breathing out, or expiration, occurs mostly due to the recoil of the lungs after they have been stretched by the inspiration process, and is therefore a mainly passive process
  • Volume of the chest decreases and pressure increases, causing air to be forced out down its pressure gradient
    • When gas is in a low volume container it is compressed, causing the gas particles to exert more pressure on the walls of the container
  • The passive expiration process
    • External intercostal muscles relax, allowing the ribcage to move down and in
    • Diaphragm relaxes and becomes dome-shaped
    • The recoil of elastic fibres in the alveoli walls reduces the volume of the lungs
  • The expiration process can be active when there is a need to expel excess air from the lungs e.g. when blowing out a candle
  • The active expiration process
    • Internal intercostal muscles contract to pull the ribs down and in
    • Abdominal muscles contract to push organs upwards against the diaphragm, decreasing the volume of the chest cavity
    • This causes forced exhalation

Exhalation, IGCSE & GCSE Biology revision notes

The process of passive expiration

Did this page help you?