Syllabus Edition

First teaching 2023

First exams 2025

|

Measuring Variables in Chemistry (SL IB Chemistry)

Revision Note

Caroline

Author

Caroline

Expertise

Physics Lead

Measuring Variables in Chemistry

  • You need to know how to accurately measure variables to allow the collection of valid and high-quality data
  • Sometimes, you will be required to make a decision as to what piece of equipment to use based on which is the most appropriate for that particular task

Measuring mass

  • Mass is measured using a digital balance which normally gives readings to two decimal places
  • Balances must be tared (set to zero) before use
  • The standard unit of mass is kilograms (kg) but in chemistry, grams (g) are most often used
    • 1 kilogram = 1000 grams

Measuring the volume of liquids

  • The volume of a liquid can be determined using several types of apparatus, depending on the level of accuracy needed
  • For approximate volumes where high accuracy is not an important factor, measuring (or graduated) cylinders are used
    • These are graduated (have a scale so can be used to measure) and are available typically in a range of sizes from 10 cm3 to 1 litre (1 dm3)
  • Volumetric pipettes are the most accurate way of measuring a fixed volume of liquid, usually 10 cm3 or 25 cm3
    • They have a scratch mark on the neck which is matched to the bottom of the meniscus to make the measurement
  • Burettes are the most accurate way of measuring a variable volume of liquid between 0 cm3 and 50 cm3 (e.g. in a titration)
    • The tricky thing with burettes is to remember to read the scale from top to bottom as 0.00 cm3 is at the top of the column
  • Whichever apparatus you use, you may see markings in ml (millilitre) which is the same as a cm3

Equipment used to measure the volume of liquids
equipment-used-for-measuring-volumes-of-liquidsequipment-used-for-measuring-volumes-of-liquids

Diagram of a burette, a measuring cylinder, a pipette filler and a volumetric pipette

Measuring the volume of gases

  • The volume of a gas sometimes needs to be measured and is done by collecting it in a graduated measuring apparatus
  • A gas syringe is usually the apparatus used
  • A graduated measuring cylinder or burette inverted in water may also be used, provided the gas is not water-soluble
  • If the gas happens to be heavier than air and is coloured, the cylinder can be used upright

Measurement of the volume of gas using a gas syringe

Diagram showing how gas is collected in a gas syringe, which has graduated markings to enable measurement of volume
Diagram of the set-up for an experiment involving gas collection

Measuring time

  • Time can be measured using a stopwatch or stop-clock which are usually accurate to one or two decimal places
  • The units of time normally used are seconds or minutes although other units may be used for extremely slow reactions (e.g. rusting)
    • 1 minute = 60 seconds
  • An important factor when measuring time intervals is human reaction time
    • This can have a significant impact on measurements when the measurements involved are very short (less than a second)

Exam Tip

  • Be careful when recording time not to mix up seconds and minutes in the same table
    • If a table heading shows Time / mins and you record a stopwatch display of 1.30, meaning 1 minute and 30 seconds, that is wrong as it should be 1.5 mins
  • To avoid any confusion, if the time intervals are less than a minute, it is best to change the recorded units to seconds
    • So the 1.30 stopwatch display would therefore be recorded as 90 seconds

Measuring temperature

  • Temperature is measured with a thermometer or digital probe
  • Laboratory thermometers usually have a precision of a half or one degree
  • Digital temperature probes are available which are more precise than traditional thermometers and can often read to 0.1 oC
  • Traditional thermometers rely upon the uniform expansion and contraction of a liquid substance with temperature; digital temperature probes can be just as, if not, more accurate than traditional thermometers
  • The units of temperature are degrees Celsius (ºC)

Measuring length

  • Rulers can be used to measure small distances of a few centimetres (cm).
    • They are able to measure to the nearest millimetre (mm)
  • The standard unit of length is metres (m)
  • Larger distances can be measured using a tape measure
  • Many distances in chemistry are on a much smaller scale, for example, a typical atomic radius is around 1 x 10-10 m, so cannot be measured in this way

 Measuring length

A ruler is used to measure the length of a pencil

A ruler can measure distances to the nearest mm

Measuring the pH of a solution

  • pH can be measured using an indicator or a digital pH meter
  • pH meters contain a special electrode with a thin glass membrane that allows hydrogen ions to pass through; the ions alter the voltage detected by the electrode
  • An indicator is a substance which changes colour depending on the pH of the solution to which it is added
  • There are natural indicators and synthetic indicators which have different uses
    • Generally, natural indicators are wide range indicators that contain a mixture of different plant extracts and so can operate over a broad range of pH values
    • Synthetic indicators mostly have very narrow pH ranges at which they operate
      • They have sharp colour changes meaning they change colour quickly and abruptly as soon as a pH specific to that indicator is reached
  • Indicators are intensely coloured and very sensitive so only a few drops are needed
  • Universal indicator is a wide range indicator and can give only an approximate value for pH
    • It is made of a mixture of different plant indicators which operate across a broad pH range and is useful for estimating the pH of an unknown solution
    • A few drops are added to the solution and the colour is matched with a colour chart which indicates the pH which matches with specific colours
    • Universal indicator colours vary slightly between manufacturer so colour charts are usually provided for a specific indicator formulation

Colours of universal indicator

Each colour that universal indicator can change to indicates a different pH value

pH scale with the universal indicator colours used to determine the pH of a solution

Exam Tip

  • pH probes offer higher precision and accuracy compared with indicators, so they are more suitable for most applications 
  • Indicators with a sharp colour change are still a suitable choice for use in titrations as they give a clear endpoint, are simple to use and give valid results
  • pH meters may respond more gradually to changes in pH so may not provide a clear, sharp signal at the endpoint

Measuring electric current

  • Current is measured using an ammeter
  • Ammeters should always be connected in series with the part of the circuit you wish to measure the current through

Circuit diagram with a battery, bulb and ammeter in series

An ammeter can be used to measure the current around a circuit

Digital or Analogue?

  • Ammeters can be either
    • Digital (with an electronic display)
    • Analogue (with a needle and scale)

 Analogue Ammeters

  • Typical ranges are 0.1 - 1.0 A and 1.0 - 5.0 A for analogue ammeters
    • Always double-check exactly where the marker is before an experiment
    • If the marker is not at zero, you will need to subtract this from all your measurements
  • They should be checked for zero errors before using
  • They are also subject to parallax error 
    • Always read the meter from a position directly perpendicular to the scale

An analogue ammeter

An analogue display ammeter

Analogue ammeters have a needle and scale for measuring electric current

Digital Ammeters

  • Digital ammeters can measure very small currents, in mA or µA
  • Digital displays show the measured values as digits and are more accurate than analogue displays
  • They’re easy to use because they give a specific value and are capable of displaying more precise values
  • However, digital displays may 'flicker' back and forth between values and a judgement must be made as to which to write down
    • Make sure the reading is zero before starting an experiment, or subtract the “zero” value from the end results
    • Digital ammeters should be checked for zero errors

A digital ammeter

A digital display ammeter

Digital ammeters have an electric read-out for measuring electric current

Measuring the electric potential difference

  • Electric potential difference is measured using a voltmeter, which can be either
    • Digital (with an electronic display)
    • Analogue (with a needle and scale)
  • Voltmeters are connected in parallel with the component being tested
    • The potential difference is the difference in electrical potential between two points, therefore the voltmeter has to be connected to two points in the circuit 

Analogue or Digital?

  • Analogue voltmeters are subject to 
    • Always read the meter from a position directly perpendicular to the scale parallax errors 
  • Typical ranges are 0.1-1.0 V and 0-5.0 V for analogue voltmeters although they can vary
    • Always double-check exactly where the marker is before an experiment, if not at zero, you will need to subtract this from all your measurements
    • They should be checked for zero errors before using

An analogue and digital voltmeter

An analogue and digital voltmeter

Voltmeters can be either analogue (with a scale and needle) or digital (with an electronic read-out) for measuring the electric potential difference

  • Digital voltmeters can measure very small potential differences, in mV or µV
  • Digital displays show the measured values as digits and are more accurate than analogue displays
  • They’re easy to use because they give a specific value and are capable of displaying more precise values
    • However, digital displays may 'flicker' back and forth between values and a judgement must be made as to which to write down
  • Digital voltmeters should be checked for zero errors
    • Make sure the reading is zero before starting an experiment, or subtract the “zero” value from the end results

Did this page help you?